Recursive Definitions of Monadic Functions
نویسندگان
چکیده
منابع مشابه
Recursive Definitions of Monadic Functions
Alexander Krauss Technische Universität München, Institut für Informatik http://www.in.tum.de/~krauss Abstract Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL’s imperative programming extension, which results i...
متن کاملThe Convergence of Functions to Fixedpoints of Recursive Definitions
The classical method for constructing the least fixedpoint of a recursive definition is to generate a sequence of functions whose initial element is the totally undefined function and which converges to the desired least fixedpoint. This method, due to Kleene, cannot be generalized to allow the construction of other fixedpoints. In this paper we present an alternate definition of convergence an...
متن کاملPositive Inductive-Recursive Definitions
A new theory of data types which allows for the definition of types as initial algebras of certain functors Fam(C) → Fam(C) is presented. This theory, which we call positive inductive-recursive definitions, is a generalisation of Dybjer and Setzer’s theory of inductive-recursive definitions within which C had to be discrete — our work can therefore be seen as lifting this restriction. This is a...
متن کاملRecursive definitions on surreal numbers
Let No be Conway’s class of surreal numbers. I will make explicit the notion of a function f on No recursively defined over some family of functions. Under some ‘tameness’ and uniformity conditions, f must satisfy some interesting properties; in particular, the supremum of the class ̆ x ∈ No : f (x) ≥ 0 ̄ is actually an element of No. As an application, I will prove that concatenation function x ...
متن کاملType Inference for Recursive Definitions
We consider type systems that combine universal types, recursive types, and object types. We study type inference in these systems under a rank restriction, following Leivant's notion of rank. To motivate our work, we present several examples showing how our systems can be used to type programs encountered in practice. We show that type inference in the ranksystem is decidable for and undecidab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2010
ISSN: 2075-2180
DOI: 10.4204/eptcs.43.1